悟空视频

    在线播放云盘网盘BT下载影视图书

    机器学习中的概率统计: Python语言描述 - 图书

    2020
    导演:张雨萌
    本书围绕机器学习算法中涉及的概率统计知识展开介绍,沿着概率思想、变量分布、参数估计、随机过程和统计推断的知识主线进行讲解,结合数学的本质内涵,用浅显易懂的语言讲透深刻的数学思想,帮助读者构建理论体系。同时,作者在讲解的过程中注重应用场景的延伸,并利用Python工具无缝对接工程应用,帮助读者学以致用。 全书共5章。第1章以条件概率和独立性作为切入点,帮助读者建立认知概率世界的正确视角。第2章介绍随机变量的基础概念和重要分布类型,并探讨多元随机变量间的重要关系。第3章介绍极限思维以及蒙特卡罗方法,并重点分析极大似然估计方法以及有偏无偏等重要性质,最后拓展到含有隐变量的参数估计问题,介绍EM算法的原理及其应用。第4章由静态的随机变量过渡到动态的随机过程,重点介绍马尔可夫过程和隐马尔可夫模型。第5章聚焦马尔可夫链-蒙特卡罗方法,并列举实例展示Metropo...(展开全部)
    机器学习中的概率统计: Python语言描述
    图书

    机器学习线性代数基础: Python语言描述 - 图书

    导演:张雨萌
    数学是机器学习绕不开的基础知识,传统教材的风格偏重理论定义和运算技巧,想以此高效地打下机器学习的数学基础,针对性和可读性并不佳。 本书以机器学习涉及的线性代数核心知识为重点,进行新的尝试和突破:从坐标与变换、空间与映射、近似与拟合、相似与特征、降维与压缩这5个维度,环环相扣地展开线性代数与机器学习算法紧密结合的核心内容,并分析推荐系统和图像压缩两个实践案例。 本书在介绍完核心概念后,还将线性代数的应用领域向函数空间和复数域中进行拓展与延伸;同时极力避免数学的晦涩枯燥,充分挖掘线性代数的几何内涵,并以Python语言为工具进行数学思想和解决方案的有效实践。 本书适合实践于数据分析、信号处理等工程领域的读者,也适合在人工智能、机器学习领域进行理论学习和实践,希望筑牢数学基础的读者,以及正在进行线性代数课程学习的读者阅读。
    机器学习线性代数基础: Python语言描述
    搜索《机器学习线性代数基础: Python语言描述》
    图书

    概率机器学习 - 图书

    2025
    导演:凯文·P.墨菲
    本书通过概率建模和贝叶斯决策理论的统一视角,详细且与时俱进地介绍了机器学习(包括深度学习)的理论和方法。书中涵盖了数学背景(包括线性代数和优化理论)、基础的监督学习方法(包括线性回归、逻辑回归和深度神经网络),以及更高级的主题(包括迁移学习和无监督学习)。章节末尾的练习让读者能够应用所学知识,附录部分则对书中使用的符号进行了说明。 本书源自作者2012年的著作《机器学习:概率视角》,它不仅仅是一个简单的更新版本,更是一本全新的著作,反映了自2012年以来该领域的巨大发展,尤其是深度学习方面的进展。由于篇幅限制,新版分为上下两卷:《概率机器学习:基础篇》和《概率机器学习:进阶篇》,本书是上卷基础篇,下卷进阶篇将继续采用相同的概率方法,深入探讨更高级的主题。 新版的另一个主要变化是所有的软件代码都使用Python而不是MATLAB来实现,新代码使用了标准...(展开全部)
    概率机器学习
    搜索《概率机器学习》
    图书

    机器学习中的概率思维 - 图书

    2025计算机·人工智能
    导演:翟中华 朱雅哲
    本书深入剖析机器学习中的概率思维,从基础理论出发,结合经典案例,阐述如何将概率思维巧妙地应用于机器学习算法,帮助读者理解数据背后的规律与不确定性。除引言外,全书内容分为5章,包括贝叶斯定理中的概率思维、朴素贝叶斯算法中的概率思维、极大似然估计和最大后验估计、贝叶斯网络、马尔可夫链和隐马尔可夫模型。本书适合机器学习领域的工程师、研究员阅读,也可作为计算机科学、统计学、电子工程、计量经济学等领域的技术人员的参考用书。
    机器学习中的概率思维
    搜索《机器学习中的概率思维》
    图书

    机器学习中的概率思维 - 图书

    2025计算机·人工智能
    导演:翟中华 朱雅哲
    本书深入剖析机器学习中的概率思维,从基础理论出发,结合经典案例,阐述如何将概率思维巧妙地应用于机器学习算法,帮助读者理解数据背后的规律与不确定性。除引言外,全书内容分为5章,包括贝叶斯定理中的概率思维、朴素贝叶斯算法中的概率思维、极大似然估计和最大后验估计、贝叶斯网络、马尔可夫链和隐马尔可夫模型。本书适合机器学习领域的工程师、研究员阅读,也可作为计算机科学、统计学、电子工程、计量经济学等领域的技术人员的参考用书。
    机器学习中的概率思维
    搜索《机器学习中的概率思维》
    图书

    利用Python实现概率、统计及机器学习方法 - 图书

    导演:何塞·安平科
    利用Python实现概率、统计及机器学习方法
    搜索《利用Python实现概率、统计及机器学习方法》
    图书

    Python机器学习 - 图书

    2021计算机·编程设计
    导演:塞巴斯蒂安·拉施卡 瓦希德·米尔贾利利
    本书自第1版出版以来,备受广大读者欢迎。第3版结合TensorFlow 2和scikit-learn的最新版本进行了更新,其范围进行了扩展,以涵盖强化学习和生成对抗网络(GAN)这两种最先进的机器学习技术。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还讨论了机器学习概念的必要细节,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供了直观且翔实的解释,是Python机器学习入门必读之作。书中涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,可帮助读者快速解决自己和团队面临的一些重要问题。本书适用于机器学习的初学者和专业技术人员。
    Python机器学习
    搜索《Python机器学习》
    图书

    python机器学习 - 图书

    导演:Sebastian Raschka
    Sebastian Raschka是密歇根州立大学的博士生,他在计算生物学领域提出了几种新的计算方法,还被科技博客Analytics Vidhya评为GitHub上具影响力的数据科学家。他有一整年都使用Python进行编程的经验,同时还多次参加数据科学应用与机器学习领域的研讨会。正是因为Sebastian 在数据科学、机器学习以及Python等领域拥有丰富的演讲和写作经验,他才有动力完成此书的撰写,目的是帮助那些不具备机器学习背景的人设计出由数据驱动的解决方案。 他还积极参与到开源项目中,由他开发完成的计算方法已经被成功应用到了机器学习竞赛(如Kaggle等)中。在业余时间,他沉醉于构建体育运动的预测模型,要么待在电脑前,要么在运动。
    python机器学习
    搜索《python机器学习》
    图书

    Python机器学习 - 图书

    导演:[美]塞巴斯蒂安·拉施卡
    适读人群: 想进入机器学习领域的初学者; 计算机及相关专业的学生; 想要向机器学习工程师、数据科学家转型的非开发岗人员; 使用过机器学习技术,但想要更加深入了解其工作原理的人员; 其他对机器学习、人工智能有兴趣的自学者 本书是使用Python进行机器学习和深度学习的全面指南。它既可以用作清晰的分步教程,也可以作为构建机器学习系统时常用的参考手册。本书包含清晰的解释、图表和工作示例,全面深入地介绍了机器学习的基本技术,并且给出了机器学习背后的原理,使你可以自己建立模型和应用程序。第3版结合TensorFlow 2和scikit-learn的新版本进行了更新,涵盖强化学习和生成对抗网络(GAN)这两种先进的机器学习技术。 机器学习将改变你解决问题的思路,并让你看到如何释放数据的力量来解决问题。无论你是Python机器学习的初学者还是想加深自己对前沿发展的...(展开全部)
    Python机器学习
    搜索《Python机器学习》
    图书

    Python机器学习 - 图书

    2021计算机·编程设计
    导演:塞巴斯蒂安·拉施卡 瓦希德·米尔贾利利
    本书自第1版出版以来,备受广大读者欢迎。第3版结合TensorFlow 2和scikit-learn的最新版本进行了更新,其范围进行了扩展,以涵盖强化学习和生成对抗网络(GAN)这两种最先进的机器学习技术。与同类书相比,本书除了介绍如何用Python和基于Python的机器学习软件库进行实践外,还讨论了机器学习概念的必要细节,同时对机器学习算法的工作原理、使用方法以及如何避免掉入常见的陷阱提供了直观且翔实的解释,是Python机器学习入门必读之作。书中涵盖了众多高效Python库,包括scikit-learn、Keras和TensorFlow等,系统性地梳理和分析了各种经典算法,并通过Python语言以具体代码示例的方式深入浅出地介绍了各种算法的应用,还给出了从情感分析到神经网络的一些实践技巧,可帮助读者快速解决自己和团队面临的一些重要问题。本书适用于机器学习的初学者和专业技术人员。
    Python机器学习
    搜索《Python机器学习》
    图书
    加载中...